Istoria  transhumanismului


În articolul său din 2005 "O istorie a gândirii transumaniste", filosoful transumanist Nick Bostrom localizează rădăcinile transumanismului în umanismul renascentist și Iluminism. De exemplu, Giovanni Pico della Mirandola chema oamenii să-și "sculpteze propria statuie", René Descartes considera ameliorarea umană unul dintre fructele abordării sale științifice, iar Marchizul de Condorcet specula asupra folosirii științei medicale pentru extinderea duratei vieții umane. În secolul XX, un precursor direct și influent al conceptelor transumaniste a fost eseul "Dedal: știința și viitorul" din 1923 al geneticianului J.B.S. Haldane, care prezicea că urmau să fie obținute mari beneficii din aplicații ale geneticii și altor științe avansate în biologia umană. Biologul Julian Huxley, fratele autorului Aldous Huxley (prieten din copilărie al lui Haldane), pare să fi fost primul care a folosit cuvântul "transumanism". Scriind în 1957, el definea transumanismul ca "omul rămânând om, dar depășindu-se pe sine prin realizarea noilor posibilități ale naturii sale umane". Această definiție diferă substanțial de cea aflată în uz comun din anii 1980 încoace.
Informaticianul Marvin Minsky a scris despre relațiile între inteligența umană și cea artificială începând din anii 1960. De-a lungul deceniilor ce au urmat, acest domeniu a continuat să genereze gânditori influenți, ca Hans Moravec și Raymond Kurzweil, care oscilau între arena tehnică și speculațiile futuriste în stil transumanist. Coalizarea unei mișcări transumaniste identificabile a început în ultimele decenii ale secolului XX. În 1966, FM-2030 (fost F.M. Esfandiary), un futurist care preda "noile concepte ale umanului" la "Noua Școală" din New York, a început să-i identifice pe oamenii care adoptă tehnologii, stiluri și filosofii de viață tranziționale spre "postumanitate" ca "transumani" (prescurtare de la "umani tranzitorii"). În 1972, Robert Ettinger a contribuit la conceptualizarea "transumanității" în cartea sa "Om înspre supraom". FM-2030 a publicat "Upwingers Manifesto" în 1973 pentru a stimula activismul transumanist.
Primii transumaniști auto-declarați s-au întâlnit formal la începutul anilor 1980 la Universitatea din California, Los Angeles, care a devenit centrul principal al gândirii transumaniste. Aici, FM-2030 a ținut cursuri despre ideologia sa futuristă "a treia cale". La centrul media EZTV frecventat de transumaniști și alți futuriști, Natasha Vita-More a prezentat "Breaking Away", filmul ei experimental din 1980 pe tema descătușării oamenilor din limitările lor biologice și din gravitația pământului, în drumul lor către spațiu. FM-2030 și Vita-More au început în scurt timp să organizeze întâlniri ale transumaniștilor în Los Angeles, incluzând studenți de la cursurile lui FM-2030 și spectatori de la producțiile artistice ale Natashei Vita-More. În 1982, aceasta din urmă a scris "Declarația Artelor Transumaniste" și, șase ani mai târziu, a produs programul TV "Actualizare TransSeculară" despre transumanitate, care a ajuns la mai bine de 100.000 de telespectatori.
În 1986, Eric Drexler a publicat "Motoare ale creației: era viitoare a nanotehnologiei", în care discuta posibilitățile nanotehnologiei și asambloarelor moleculare, și a fondat Foresight Institute. Fiind prima organizație non-profit care a cercetat, promovat și efectuat criogenia, birourile din California de Sud ale Fundației ALCOR pentru Extinderea Vieții au devenit un centru pentru futuriști. În 1988, în timpul ascensiunii cyberculturii, filosoful Max More a fondat Institutul Extropy și în 1990 a fost principalul contribuitor la o doctrină transumanistă formalizată, care a căptătat forma "Principiilor Extropiei". În 1990, el a pus bazele transumanismului modern dându-i o nouă definiție:
Transumanismul este o clasă de filosofii care caută să ne îndrume către o condiție postumană. Transumanismul împărtășește multe elemente ale umanismului, inclusiv respectul pentru rațiune și știință, devotamentul față de progres și o valorizare a existenței umane (sau transumane) în această viață. [...] Transumanismul diferă față de umanism prin recunoașterea și anticiparea modificărilor radicale ale naturii și posibilităților vieții noastre, rezultând din diverse științe și tehnologii [...].
În 1998, filosofii Nick Bostrom și David Pearce au fondat Asociația Mondială Transumanistă (World Transhumanist Association, WTA), o organizație neguvernamentală internațională care să lucreze pentru recunoașterea transumanismului ca subiect legitim al investigației științifice și politicilor publice. În 1999, WTA a proiectat și adoptat "Declarația Transumanistă". "FAQ-ul Transumanist" pregătit de WTA furniza două definiții formale pentru transumanism:
1. Mișcarea intelectuală și culturală care afirmă că este posibilă și de dorit îmbunătățirea fundamentală a condiției umane prin rațiune aplicată, în special prin dezvoltarea și accesibilizarea pe scară largă a tehnologiilor care să elimine îmbătrânirea și să mărească mult capacitățile umane intelectuale, fizice și psihologice.
2. Studiul consecințelor, promisiunilor și potențialelor pericole ale tehnologiilor care ne vor permite să depășim limitările umane fundamentale și studiul conex al problemelor etice implicate în dezvoltarea și utilizarea unor asemenea tehnologii.

Trans - humanism

Transumanismul 


(uneori simbolizat prin >H sau H+) este o mișcare intelectuală și culturală internațională care sprijină folosirea noilor științe și tehnologii pentru a îmbunătăți abilitățile și aptitudinile mentale și fizice ale oamenilor și a ameliora ceea ce ea vede ca aspecte nedorite și nenecesare ale condiției umane, cum ar fi prostia, suferința, boala, îmbătrânirea și moartea involuntară. Gânditorii transumaniști studiază posibilitățile și consecințele dezvoltării și folosirii în aceste scopuri ale tehnicilor de îmbunătățire umană și ale altor tehnologii în curs de apariție. Pericolele și beneficiile posibile ale noilor tehnologii puternice care s-ar putea să schimbe radical condițiile vieții umane sunt, de asemenea, preocupări ale mișcării transumaniste.
Cu toate că prima utilizare cunoscută a termenului "transumanism" datează din 1957, semnificația contemporană este un produs al anilor 1980, când un grup de oameni de știință, artiști și futuriști cu sediul în Statele Unite a început să organizeze ceea ce între timp a crescut la nivelul de mișcare transumanistă. Gânditorii transumaniști postulează că ființele umane vor fi transformate mai devreme sau mai târziu în ființe cu abilități atât de mult extinse încât să merite eticheta de "postumane". Previziunile transumaniste despre o umanitate viitoare profund transformată au atras mulți susținători și critici dintr-o arie largă de perspective. Transumanismul a fost descris de către un opozant declarat ca "cea mai periculoasă idee din lume", în timp ce un susținător contrează spunând că este "mișcarea ce esențializează cele mai îndrăznețe, curajoase, imaginative și idealiste aspirații ale umanității"


CASE STUDY Golden rice - Riz D'or

Golden rice is a variety of Oryza sativa rice produced through genetic engineering to biosynthesize beta-carotene, a precursor of pro-vitamin A in the edible parts of rice. The scientific details of the rice were first published in Science in 2000. Golden rice was developed as a fortified food to be used in areas where there is a shortage of dietary vitamin A. In 2005 a new variety called Golden Rice 2 was announced which produces up to 23 times more beta-carotene than the original variety of golden rice. Neither variety is currently available for human consumption. Although golden rice was developed as a humanitarian tool, it has met with significant opposition from environmental and anti-globalization activists.


The research that led to golden rice was conducted with the goal of helping children who suffer from vitamin A deficiency (VAD). At the beginning of the 21st century, 124 million people, in 118 countries in Africa and South East Asia, were estimated to be affected by VAD. VAD is responsible for 1–2 million deaths, 500,000 cases of irreversible blindness and millions of cases of xerophthalmia annually. Children and pregnant women are at highest risk. Vitamin A is supplemented orally and by injection in areas where the diet is deficient in vitamin A. As of 1999, there were 43 countries that had vitamin A supplementation programs for children under 5; in 10 of these countries, two high dose supplements are available per year, which, according to UNICEF, could effectively eliminate VAD. However, UNICEF and a number of NGOs involved in supplementation note more frequent low-dose supplementation should be a goal where feasible.

Because many children in countries where there is a dietary deficiency in vitamin A rely on rice as a staple food, the genetic modification to make rice produce provitamin A (beta-carotene) is seen as a simple and less expensive alternative to vitamin supplements or an increase in the consumption of green vegetables or animal products. It can be considered as the genetically engineered equivalent of fluoridated water or iodized salt.

Initial analyses of the potential nutritional benefits of golden rice suggested consumption of golden rice would not eliminate the problems of blindness and increased mortality, but should be seen as a complement to other methods of vitamin A supplementation. Since then, improved strains of golden rice have been developed containing sufficient provitamin A to provide the entire dietary requirement of this nutrient to people who eat about 75g of golden rice per day.

In particular, since carotenes are hydrophobic, there needs to be a sufficient amount of fat present in the diet for golden rice (or most other vitamin A supplements) to be able to alleviate vitamin A deficiency. In that respect, it is significant that vitamin A deficiency is rarely an isolated phenomenon, but usually coupled to a general lack of a balanced diet (see also Vandana Shiva's arguments below). Hence, assuming a bioavailability on par with other natural sources of provitamin A, Greenpeace estimated adult humans would need to eat about 9 kilograms of cooked golden rice of the first breed to receive their RDA of beta-carotene, while a breast-feeding woman would need twice the amount; the effects of an unbalanced (fat-deficient) diet were not fully accounted for. In other words, it would probably have been both physically impossible to grow enough as well as to eat enough of the original golden rice to alleviate debilitating vitamin A deficiency. This claim however referred to a prototype cultivar of golden rice; more recent versions have considerably higher quantities of vitamin A in them.

CASE STUDY B.t. corn - Mais B.t.

Bt-corn is a type of genetically modified organism, termed GMO. A GMO is a plant or animal that has been genetically modified through the addition of a small amount of genetic material from other organisms through molecular techniques. Currently, the GMOs on the market today have been given genetic traits to provide protection from pests, tolerance to pesticides, or improve its quality. Examples of GMO field crops include Bt-potatoes, Bt-corn, Bt-sweet corn, Roundup Ready soybeans, Roundup Ready Corn, and Liberty Link corn.

Genetically modified foods are foods derived from GMO crops. For example, corn produced through biotechnology is being used in many familiar foods, including corn meal and tortilla chips. In addition, corn is used to make high fructose corn syrup, which is used as a sweetener in many foods such as soft drinks and baked goods. While the FDA (U.S. Food and Drug Administration) regulates genetically modified foods, it considers Bt-corn to be nutritionally equivalent to traditional corn.

To transform a plant into a GMO plant, the gene that produces a genetic trait of interest is identified and separated from the rest of the genetic material from a donor organism. Most organisms have thousands of genes, a single gene represents only a tiny fraction of the total genetic makeup of an organism.
non modifie-------------------------modifie

A donor organism may be a bacterium, fungus or even another plant. In the case of Bt corn, the donor organism is a naturally occurring soil bacterium, Bacillus thuringiensis, and the gene of interest produces a protein that kills Lepidoptera larvae, in particular, European corn borer. This protein is called the Bt delta endotoxin. Growers use Bt corn as an alternative to spraying insecticides for control of European and southwestern corn borer.

Bt Delta Endotoxin

The Bt delta endotoxin was selected because it is highly effective at controlling Lepidoptera larvae, caterpillars. It is during the larval stage when most of the damage by European corn borer occurs. The protein is very selective, generally not harming insects in other orders (such as beetles, flies, bees and wasps). For this reason, GMOs that have the Bt gene are compatible with biological control programs because they harm insect predators and parasitoids much less than broad-spectrum insecticides. The Bt endotoxin is considered safe for humans, other mammals, fish, birds, and the environment because of its selectivity. Bt has been available as a commercial microbial insecticide since the 1960s and is sold under many trade names. These products have an excellent safety record and can be used on many crops until the day of harvest.

To kill a susceptible insect, a part of the plant that contains the Bt protein (not all parts of the plant necessarily contain the protein in equal concentrations) must be ingested. Within minutes, the protein binds to the gut wall and the insect stops feeding. Within hours, the gut wall breaks down and normal gut bacteria invade the body cavity. The insect dies of septicaemia as bacteria multiply in the blood. Even among Lepidoptera larvae, species differ in sensitivity to the Bt protein.
 

Genetic Modification

Do Bt-corn hybrids differ only in that they possess the genetic code to produce the Bt protein? Not exactly. To add a trait to a crop plant, the gene must be inserted along with some additional genetic material. This additional genetic material includes a promoter sequence that, in part, determines how the new trait is expressed in the plant. For example, the promoter may cause to protein to be expressed in certain parts of the plants or only during a particular period of time. There is a marker gene that allows plant breeders to easily determine which plants have been transformed. Herbicide and antibiotic tolerance promoters are commonly used to identify transformed plants. There may also be a plasmid or vector sequence that allows for rapid multiplication of the gene of interest in a bacterial host prior to insertion in the crop plant.

FDA Approval

Federal food law requires premarket approval for food additives, whether or not they are the products of biotechnology. FDA treats substances added to food products through recombinant DNA techniques as food additives if they are significantly different in structure, function or amount than substances currently found in food.

However, if a new food product developed through biotechnology does not contain substances that are significantly different from those already in the diet, it does not require premarket approval. Products that are genetically engineered to provide pesticide traits, such as resistance to the corn borer, are also subject to regulation by the Environmental Protection Agency. Currently, genetically modified foods in the United States do not require special labeling to notify consumers.

STUDIU DE CAZ - The first synthetic cell - La premiere cellule synthetique


A chemically synthesised chromosome has for the first time been transplanted into a cell to produce a synthetic bacterium. The advance provides a basis for making organisms designed from scratch and represents a major step towards applications in biofuels and chemical synthesis through synthetic biology.
The man-made microbe is the work of a team led by Dan Gibson and genome sequencing pioneer Craig Venter, at Venter's institutes in Rockville, Maryland and San Diego, California, US. Besides a few genetic 'watermarks' encoded by the team, its genome largely duplicates that of a goat parasite called Mycoplasma mycoides. Grown in a dish, the synthetic version looks much like the original and, like its natural counterparts, is capable of self-replicating.

'For the past 15 years, the genomes of many organisms have been sequenced and deposited in databases. We call this digitising biology,' says Gibson. 'We now show that it is possible to reverse this and synthesise cells starting from this digitised information.' The aim, essentially, is to be able to carry all the information required for making life around on a memory stick.

Actually making it, however, is rather trickier. The M. mycoides genome contains more than a million 'letters' of code - nucleotide base pairs (bp) - but current DNA synthesising technology can only string together a few thousand at once. Thus, Gibson's team exploit the ability of yeast to stitch together small DNA fragments using enzymes. Since announcing the first synthetic genome in 2008,1 they have been attempting to create synthetic life by transferring bacterial genomes assembled in yeast into naturally grown host cells.

In the present study,2 over a thousand short (1,000 bp) pieces of DNA were chemically synthesised and joined by overlapping ends - as Gibson explains, the yeast recognises the overlap in the code and sews them together. Larger segments of first around ten and then a hundred thousand base pairs were combined to produce the full length synthetic genome, which was finally transplanted into the host, another bacterium of the same genus called M. capricolum.

So Gibson's work provides the tools for creating artificial life, but what about the blueprints? Designing an organism from scratch requires an understanding of what each gene codes for. But we're getting there, according to Paul Freemont of the Centre for Synthetic Biology and Innovation at Imperial College London, UK.

'The extrapolation of course is that you could actually design genomes and there's a lot of ground to cover before then, but we do understand quite a lot about what all the genes code for, so I think it's a very major step,' says Freemont. 'More likely would be to try to make a minimal synthetic genome, containing all the basic properties of a living organism, which would allow you to put other types of gene circuits into it, like biofuels or fine chemicals.'

Introducere in Tema Organismelor Modificate Genetic

 

Abstract  



*Génome = l'ensemble du matériel génétique d'un individu ou d'une espèce codé dans son ADN. Le génome est souvent comparé à une encyclopédie dont les différents volumes seraient les chromosomes.
*ADN= une molécule, présente dans toutes les cellules vivantes, qui renferme l'ensemble des informations nécessaires au développement et au fonctionnement d'un organisme. C'est aussi le support de l'hérédité car il est transmis lors de la reproduction, de manière intégrale ou non. Il porte donc l'information génétique et constitue le génome des êtres vivants.

 GENOME>CHROMOSOME>DNA 


Le génie génétique ou ingénierie génétique  est un ensemble de techniques, faisant partie de la biologie moléculaire et ayant pour objet l’utilisation des connaissances acquises en génétique pour utiliser, reproduire, ou modifier le génome des êtres vivants.


Un organisme génétiquement modifié (OGM) est un organisme vivant dont le genome a été modifié par l'Homme. Suivant les législations, les moyens permettant ces modifications vont de la sélection aux méthodes de génie génétique. Ces dernières méthodes permettent de modifier des organismes par transgénèse, c’est-à-dire l'insertion dans le génome d’un ou de plusieurs nouveaux gènes. Un « organisme transgénique », terme qui désigne les organismes qui contiennent dans leur génome des gènes « étrangers », est donc toujours un organisme génétiquement modifié.

APLiCATII Principale ale OMG

Glofish
riz normal-riz d'or
therapie genetique
Les OGM sont utilisés dans les domaines de la recherche, de la santé (thérapie génétique), de la production agricole (riz d’or, maïs MON810), et de l'industrie, même pour l’amusement (Glofish®).







---Recherche---

OGM utilisés en recherche fondamentale
En recherche fondamentale, l'obtention d'OGM n'est pas forcément un but mais le plus souvent un moyen de trouver des réponses à certaines problématiques.
L'inactivation d'un gène est une méthode utilisée en laboratoire pour comprendre le rôle et le fonctionnement de ce gène. Dans certains cas cette inactivation se fait par transgénèse en insérant un fragment d'ADN à la place du gène à étudier
Étude des gènes du développement, et évolution
Par exemple en transférant un gène de souris chez la drosophile, on a pu montrer qu'en plus d'une similarité de séquence il y avait une similarité de fonction entre certains gènes de deux espèces.
Cartographie et séquençage des génomes
Les séquençages des génomes humain et d'autres espèces, ont été conduits dans un contexte de recherche fondamentale avec comme objectif à terme des applications médicales.

---Applications medicales---
Utilisations courantes
La production d’hormones de croissance à partir de bactéries génétiquement modifiées contenant le gène de l’hormone de croissance humaine a permis depuis le début des années 1980, de traiter de nombreux cas de nanisme. Les micro-organismes génétiquement modifiés sont également utilisés pour la production d’insuline ou de vaccins anti- hépatite B. La thérapie génique a d’ores et déjà été expérimentée pour des pathologies très diverses, du cancer aux maladies cardiovasculaires, de la myopathie à la mucoviscidose. 
Projets pour l'avenir
Les OGM représenteraient une technologie d'avenir pour la médecine et l'industrie pharmaceutique du fait de leur potentiel d'amélioration variétale. Le génie génétique pourrait, par exemple, permettre de lutter contre certaines maladies en mettant en œuvre de nouveaux procédés d’obtention de produits thérapeutiques tels que des anticorps dans le traitement des cancers. Supprimer les gènes de résistance à un antibiotique utilisé actuellement en gène de sélection est un enjeu majeur des recherches actuelles.
--------------------------Xénogreffe
L'idée d'utiliser des organes d'animaux pour des greffes humaines est ancienne. Le porc, qui présente le double avantage d'être à la fois physiologiquement assez proche de l'espèce humaine et de n'avoir que très peu de maladies transmissibles à celle-ci, est considéré par les spécialistes comme le meilleur donneur d'organes possible. Des porcs transgéniques, pourraient fournir des organes « humanisés ». Cette approche thérapeutique présente un réel intérêt mais nécessite encore des travaux de recherche approfondis, notamment dans la découverte de gènes inhibateurs des réactions de rejet.





---Production agricole---

Ce qui existe

Les principales plantes cultivées (maïs, riz, coton, colza, betterave, pomme de terre, soja, œillets, chicorée, tabac, lin, tournesol) ont des variétés génétiquement modifiées. On trouve aussi des tomates, fraises, bananes, chou, chou-fleur etc.
Les premières plantes génétiquement modifiées le furent pour être rendues tolérantes à un herbicide. Aujourd'hui, du maïs, du soja, du coton, du canola, de la betterave sucrière, du lin sont génétiquement modifiées pour résister à une molécule contenu dans des herbicides totaux, le glyphosate.
Une autre perspective a conduit à l'élaboration de plantes sécrétant un insecticide. Le maïs Bt, le coton Bt doivent leur nom à un bacille (Bt) produisant des protéines insecticides et qui confère à ces plantes une résistance aux principaux insectes qui leurs sont nuisibles, notamment la pyrale dans le cas du maïs ou le budworm, dans le cas du coton.
Des aliments transformés (huiles, farines, etc) issus de matières premières génétiquement modifiées sont également commercialisables.

Projets pour l'avenir 

Une troisième voie consiste à produire des plantes cultivées génétiquement modifiées pour augmenter leurs qualités nutritives (riz doré) ou leur capacité de résistance aux variations de climat (sécheresse, moussons, etc.) Dites OGM de 2e génération, ces céréales sont toujours en développement.
La recherche s'oriente aujourd'hui vers la modification de plusieurs traits dans une seule plante génétiquement modifiée. Par exemple le gouvernement chinois pilote un projet visant l'amélioration de la qualité nutritive d'un riz, mais également son adaptation aux environnements stressants (sécheresse, salinité, etc). Ce riz, nommé GREEN SUPER RICE, devrait également comporter plusieurs gènes de résistances à des insectes et maladies.
La suppression des gènes de résistance à un antibiotique utilisés en gène de sélection ainsi que l'élimination des substances toxiques produites naturellement par certaines plantes sont des axes énoncés des recherches en cours.

---Utilisation pour l'industrie---

Les OGM permettent la production de matières premières à destination de l’industrie : des peupliers OGM ayant un taux de lignine moindre ont été obtenus, facilitant le processus de fabrication de la pâte à papier en réduisant l'utilisation des produits chimiques nécessaires pour casser la fibre du bois. Néanmoins, devant le peu de demande des papetiers, cette production devrait se tourner vers la production de bioéthanol.
Aujourd’hui, les biotechnologies employant des enzymes permettent de traiter les eaux usées industrielles.

---Glofish---

GloFish est une marque déposée de poisson zèbre génétiquement modifié par l'introduction dans son génome d'un gène d'une protéine fluorescente conférant des couleurs rouge, vert et orange clair. Il est le premier animal de compagnie génétiquement modifié.
Son nom est dérivé des mots anglais to glow « luire », fish « poisson ».
Bien qu'à l'origine ces poissons n'aient pas été conçus pour l'aquariophilie mais pour servir d'indicateur de pollution, ils ont vite trouvé un débouché commercial comme poissons d'aquarium. Vendus au grand public, ils sont disponibles pour le prix de cinq dollars aux États-Unis.


AVANTAGES de la nourriture modifie génétiquement

La population du monde a accru jusqu'à 6 milliards de gens et on s’attend que ce chiffre va s’agrandir pendant les anees suivantes. Assurer la nourriture suffisante pour ce population va être un de les défis majeurs de l’années suivants. La nourriture modifie génétiquement peut être un des solutions a ce problème, car elle a, plusieurs avantages.



 

CONTRE OGM- Introduction

Les activistes environnementaux, les organismes religieux, quelques groups d’interet public, quelques associations professionnels et autres hommes de science se sont montrés inquiets à l’égard de la nourriture génétiquement modifie et ont critique l’industrie agricole pour leur recherche de profits, sans des soucis a l’égard des potentiels hasards. La plupart de ces soucis devraient tomber en trois catégories : hasards environnementaux, danger pour la santé humaine, soucis économiques. 

CONTRE OGM- soucis économiques

Bringing a GM food to market is a lengthy and costly process, and of course agri-biotech companies wish to ensure a profitable return on their investment. Many new plant genetic engineering technologies and GM plants have been patented, and patent infringement is a big concern of agribusiness. Yet consumer advocates are worried that patenting these new plant varieties will raise the price of seeds so high that small farmers and third world countries will not be able to afford seeds for GM crops, thus widening the gap between the wealthy and the poor. It is hoped that in a humanitarian gesture, more companies and non-profits will follow the lead of the Rockefeller Foundation and offer their products at reduced cost to impoverished nations.
Patent enforcement may also be difficult, as the contention of the farmers that they involuntarily grew Monsanto-engineered strains when their crops were cross-pollinated shows. One way to combat possible patent infringement is to introduce a "suicide gene" into GM plants. These plants would be viable for only one growing season and would produce sterile seeds that do not germinate. Farmers would need to buy a fresh supply of seeds each year. However, this would be financially disastrous for farmers in third world countries who cannot afford to buy seed each year and traditionally set aside a portion of their harvest to plant in the next growing season. In an open letter to the public, Monsanto has pledged to abandon all research using this suicide gene technology.


Millions Against Monsanto
The OCA's "Millions Against Monsanto" campaign is an effort open to the public and directed to the company's President and CEO, Hugh Grant. It has also been created to allow those concerned to voice their opinion regarding the company's actions regarding "...sustainable agriculture and farmer's rights." The campaign also highlights other current, pressing issues such as labelling of GMOs available to the public and the intimidation of smaller farmers who are currently being charged with patent infringement by Monsanto.
Although the campaign itself is about specific issues, the OCA also claims that Monsanto is responsible for the following:
  • Persecuting small family farmers
  • Bovine Growth Hormone
  • Agent Orange(herbicide and defoliant with war applications)
  • Poisoning the Third World
  • Roundup pesticide
  • Water privatization
  • Genetically engineered crops
  • Farm bankruptcies